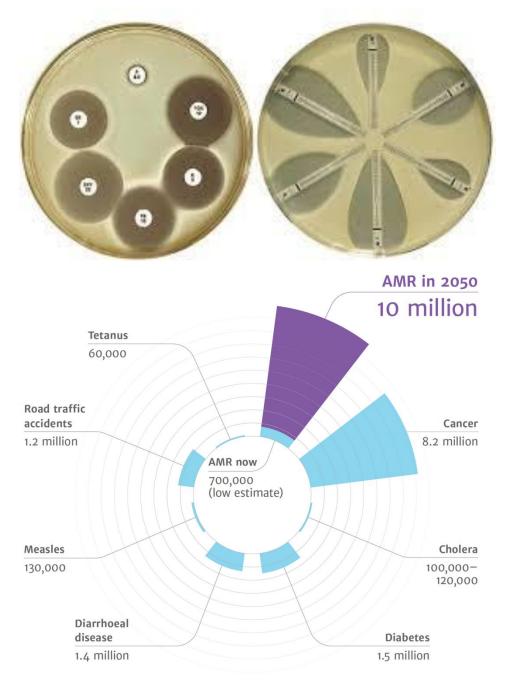
Klebsiella antimicrobial resistance (AMR) typing

Assistant Professor Zoe A. Dyson

London School of Hygiene and Tropical Medicine

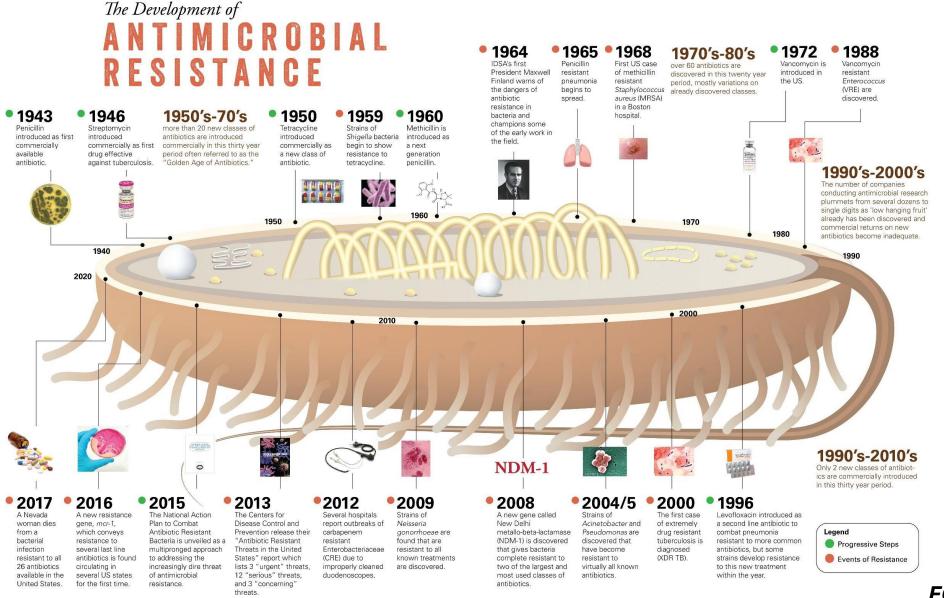
zoe.dyson@lshtm.ac.uk

<u>@msmicrobiocode</u>

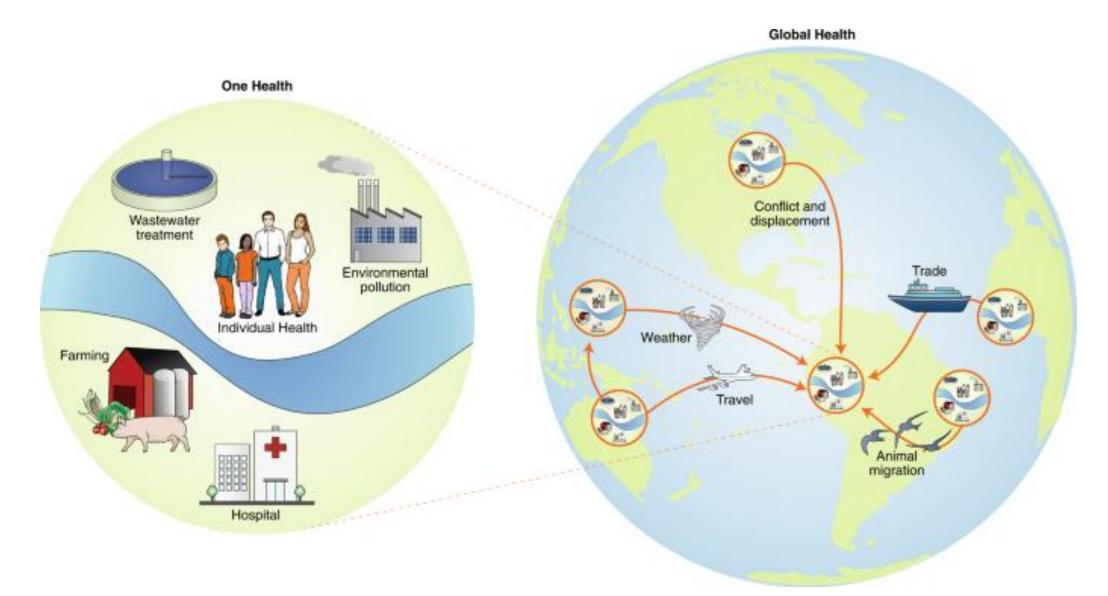

Today's schedule

Time	Activity
11:15-12:00 (45 mins)	 Lecture: <i>Klebsiella</i> antimicrobial resistance (AMR) typing An introduction to AMR determinant detection AMR in <i>Klebsiella pnuemoniae</i> AMR detection & score analysis with Kleborate
12:00-12:10 (10 mins)	Class discussion
12:10-13:00 (50 mins)	Kleborate hands on practical
13:00-14:00 (1 hour)	Lunch
14:00-15:15 (1 hour 15 mins)	Kleborate hands on practical
15:15-15:30 (15 mins)	Break
15:30-16:30 (1 hour)	Kleborate hands on practical (continued)

An introduction to AMR determinant detection

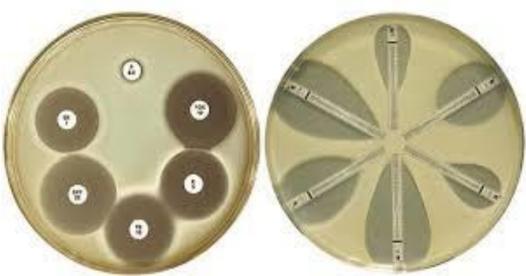

Antimicrobial resistance

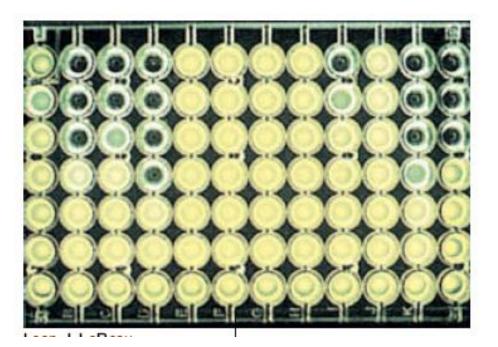
- Antimicrobial resistance (AMR) occurs when pathogens evolve over time and no longer respond to medicines used to treat infections
 - Infections become harder to treat
 - Risk of disease spread, severe illness, and death increase
- O'Neill estimated AMR inaction to lead to:
 - 10 million deaths by 2050
 - Economic cost of \$100 trillion USD
 - Failure to meet United Nations Sustainable Development Goals
- AMR national action plans & surveillance
- 2024 United Nations General Assembly


O'Neill 2016

Antimicrobial resistance: a growing problem

FOAR report, ISDA

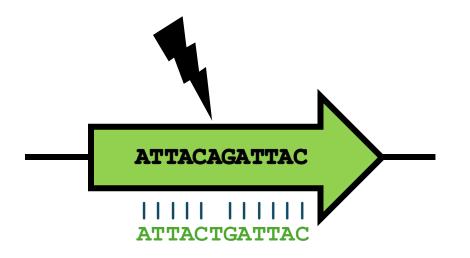

Antimicrobial resistance: many drivers



Hernando-Amado et al. 2019

AMR phenotyping methods

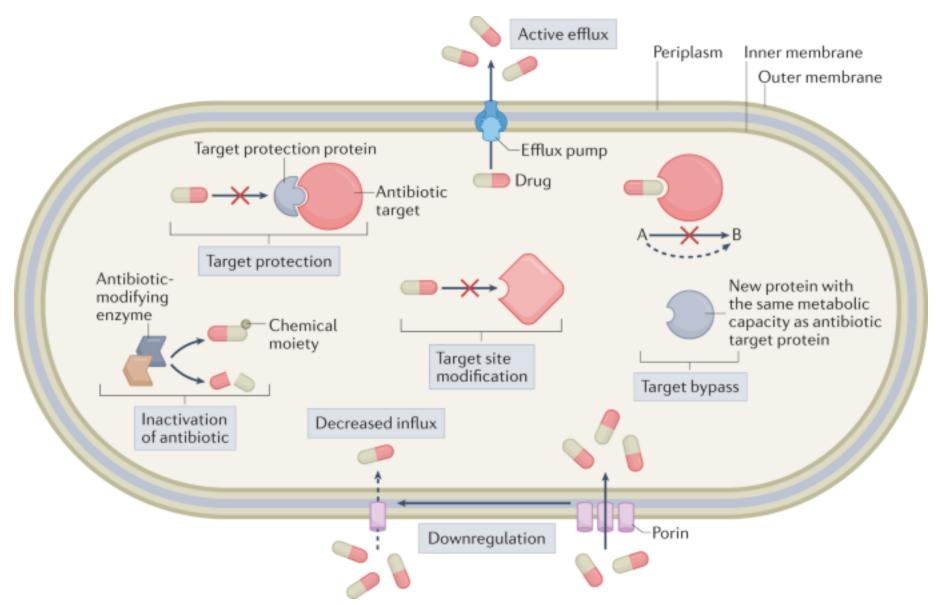
- Multiple laboratory methods exist for assessing antimicrobial resistance phenotypes
- Some of the most common ones include:
 - Disk-diffusion
 - Etest
 - Broth dilution
- Minimal Inhibitory Concentration (MIC) is the lowest concentration of an antimicrobial that will inhibit the visible growth of a microorganism after overnight incubation



Intrinsic and acquired AMR

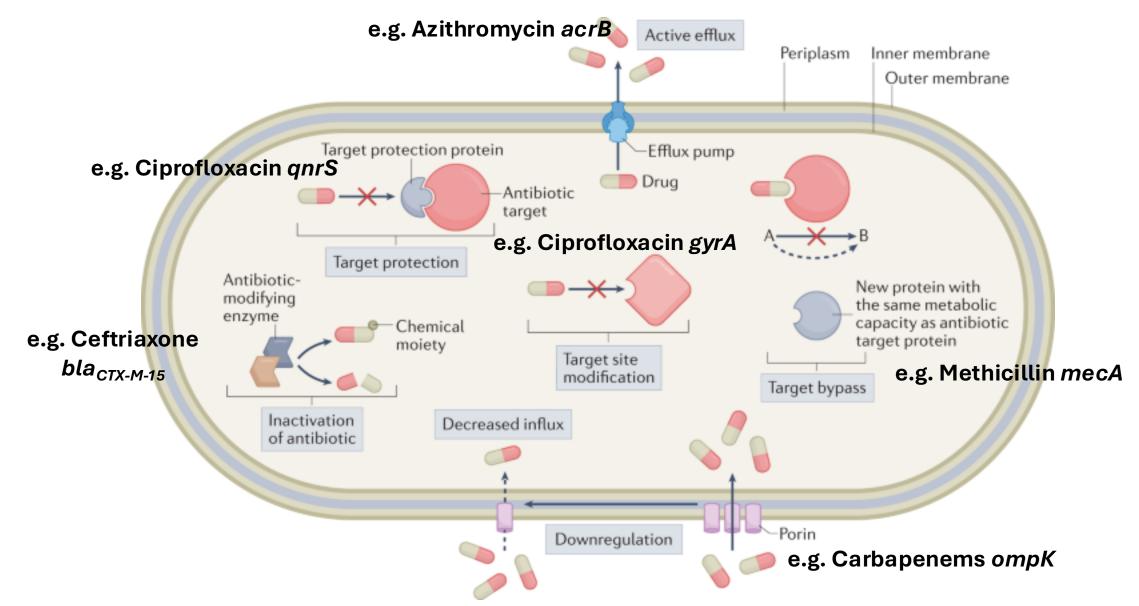
- AMR can be intrinsic or acquired
- Intrinsic resistance of a bacterial species to a particular antibiotic due to inherent structural or functional characteristics (i.e. the drug never had activity against the pathogen)
 - e.g. daptomycin is active against Gram-positive bacteria but not effective against Gram-negative bacteria due to differences in the composition of the cytoplasmic membrane
- Acquired resistance is the result of the evolution of mutations in chromosomal genes or the horizontal transfer of genes that confer resistance to antimicrobials
- Acquired resistance determinants can be readily detected from WGS data

Acquired AMR determinants detectable via WGS

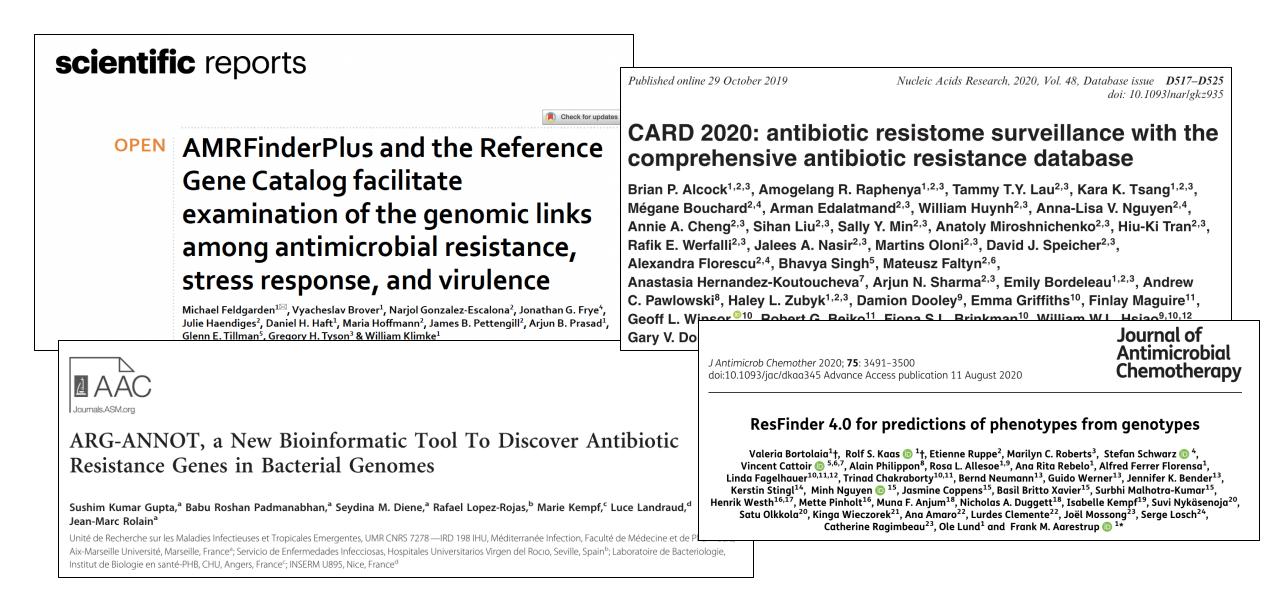

Acquired AMR genes

e.g. Ceftriaxone

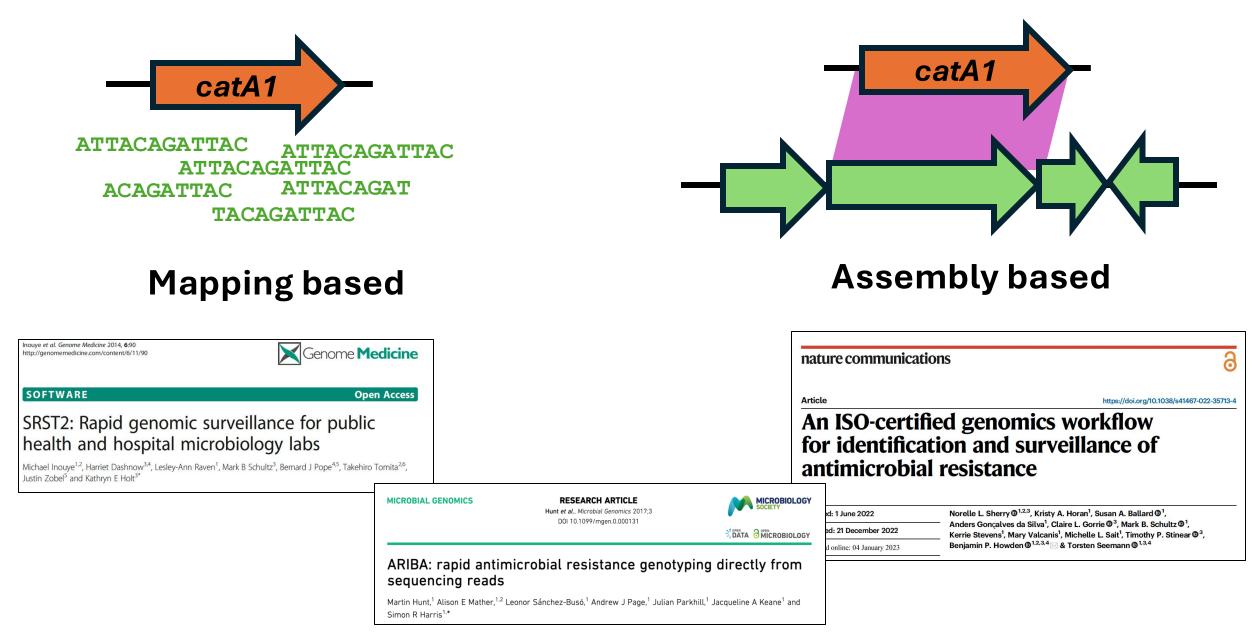
Point mutations


e.g. Fluoroquinolones

Biological mechanisms of AMR


Darby et al. 2023, Nat Rev Genet; Boolchandani et al. 2019, Nat Rev G

Biological & genetic mechanisms of AMR



Darby et al. 2023, Nat Rev Genet; Boolchandani et al. 2019, Nat Rev G

Antimicrobial resistance determinant databases

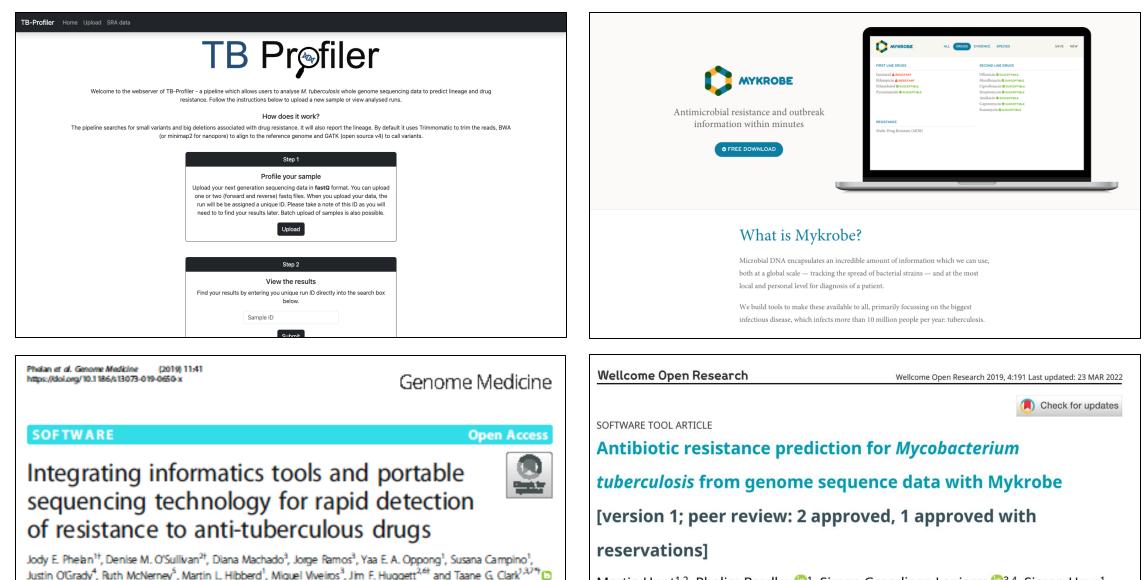
General software tools & methods

Pathogen specific tools: Kleborate & Pathogenwatch

Interactive view of core-genome phylogeny

Clinical Infectious Diseases

SUPPLEMENT ARTICLE


Rapid Genomic Characterization and Global Surveillance of Klebsiella Using Pathogenwatch

Silvia Argimón,^{1,a} Sophia David,^{1,a} Anthony Underwood,¹ Monica Abrudan,¹ Nicole E. Wheeler,¹ Mihir Kekre,¹ Khalil Abudahab,¹ Corin A. Yeats,^{1,2} Richard Goater,¹Ben Taylor,^{1,2} Harry Harste,¹ Dawn Muddyman,¹ Edward J. Feil,³ Sylvain Brisse,⁴ Kathryn Holt,^{5,6} Pilar Donado-Godoy,⁷ K. L. Ravikumar,⁸ Iruka N. Okeke,⁹ Celia Carlos,¹⁰ and David M. Aanensen¹²; for the NIHR Global Health Research Unit on Genomic Surveillance of Antimicrobial Resistance

Drug-level genome report in online tool

imicrobial resistance (AMR)			
Drug/Class	Resistance Determinants		
Aminoglycosides	aph3-Ia, strA, strB		
Carbapenems	None found		
Cephalosporins (3rd gen.)	CTX-M-15		
Cephalosporins (3rd gen.) + β-lactamase inhibitors	None found		
Colistin	None found		
Fluoroquinolones	qnrS1		
Fosfomycin	None found		
Penicillins	TEM-1D, SHV-69 (homolog)		
Penicillins + β -lactamase inhibitors	None found		
Phenicols	catA1		
Sulfonamides	sul1, sul2 (homolog)		
Tetracycline	tet(A)		

Other pathogen specific tools

Martin Hunt^{1,2}, Phelim Bradley¹, Simon Grandjean Lapierre^{3,4}, Simon Heys¹,

High concordance between AMR genotypes & phenotypes

>99.9% concordance

>91% sensitivity & specificity

Susceptible Phenotype

65 6313 215 117 6710

85 6763 232 147 7227

468 6835 781 70 8154

204 6146 197 108 6655

U F Total

Sensitivity

(95% CI)

97.1

(96.5 - 97.7)

97.5

(96.9 - 98.1)

94.6 (93.3-95.7)

91.3

(89.3-93.0)

Specificity

(95% CI)

99.0

(98.7 - 99.2)

98.8

(98.5-99.0)

93.6

(93.0-94.1)

96.8

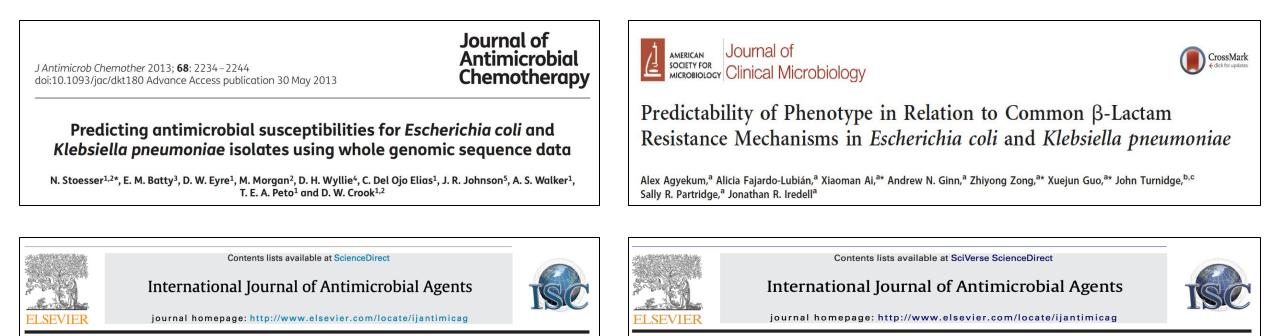
(96.3-97.2)

>99% accuracy

Antibietic	Antibiotic	MIC no.*	Phenotyp	e: susceptible	Phenotype: resistant		Analysis and							
		Genotype: resistant	Genotype: susceptible	Genotype: resistant	Genotype: susceptible	Drug	Re	sista	nt Ph	enot	ype	5	Susce	
AMX	1034	0	726	308			-	~		-	-	-	-	
AMX-CL	1034	0	726	308			R	S	U	F	Total	R	S	
CAZ	1034		983	51							numh	er of isol	ates	
CRO	1054	0	983	51							numbe	sr 0j 1501	1162	
ETP	1034	0	1034	0	0	WGS, all iso-								
GEN	1034	0	1034	0		lates								
CIP	1034	0	83	950	1 C	Isoniazid	3067	90	93	44	3294	65	6313	
AZM	1034	0	1054	ø	.0									
TMP	1034		704	328	2.5	Rifampin	2743	69	7	84	2903	85	6763	
105	1013	0	1012	1			2715	05	,	01	2505	05	0703	
TET	3034	0	1006	28		Ethambutol	1410	81	0.4		1640	460	C 0 2 0	
SXT	1034	0	495	336	•	Ethambutoi	1410	81	94	55	1640	468	6835	
CHI.	1034	0	711	323										
COL	1034	0	1034	0		Pyrazinamide	863	82	117	77	1139	204	6146	
Total combinations	14455	1	-		-									

Drugs	True positives	True negatives	False positives	False negatives	Accuracy (%)
Cefoxitin	778	0	0	0	100
Erythromycin	324	384	1	1	99.72
Tetracycline	101	609	0	0	100
Rifampicin	8	699	0	0	100
Fusidic acid	220	494	1	1	99.72
Gentamicin	53	668	0	0	100
Chloramphenicol	4	684	0	4	99.42
Mupirocin	31	571	6	0	99.01
Linezolid	0	692	0	0	100
Ciprofloxacin	398	289	0	5	99.28
Trimethoprim	0	0	0	3	0
Overall	1917	5090	8	14	99.69

AMX, Amoxicillin; AMX CL. amoxicillin/clavulanic acid; CAZ, ceftazidime; CIP, ciprofloxacin; CR0, ceftriaxone; ETP, ertapenem; GEN, gentamicin


AZM, azithromycin: TMP, trimethoprim: FOS, fosfomycin: TET, tetracycline: SXT, trimethoprim/sulphonamide: CHL, chloramphenicol: COL, colistin

Numbers in bold relate to descrepancies between genotype and phenotype.

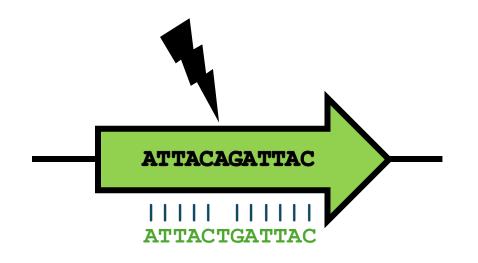
"The number of isolates that had phenotypic MIC testing.

Chattaway et al. 2021, Microb Genom; Walker et al. 1998, NJEM; Kumar et al. 2020, JAC.

High concordance between AMR genotypes & phenotypes in *Klebsiella*

Short Communication

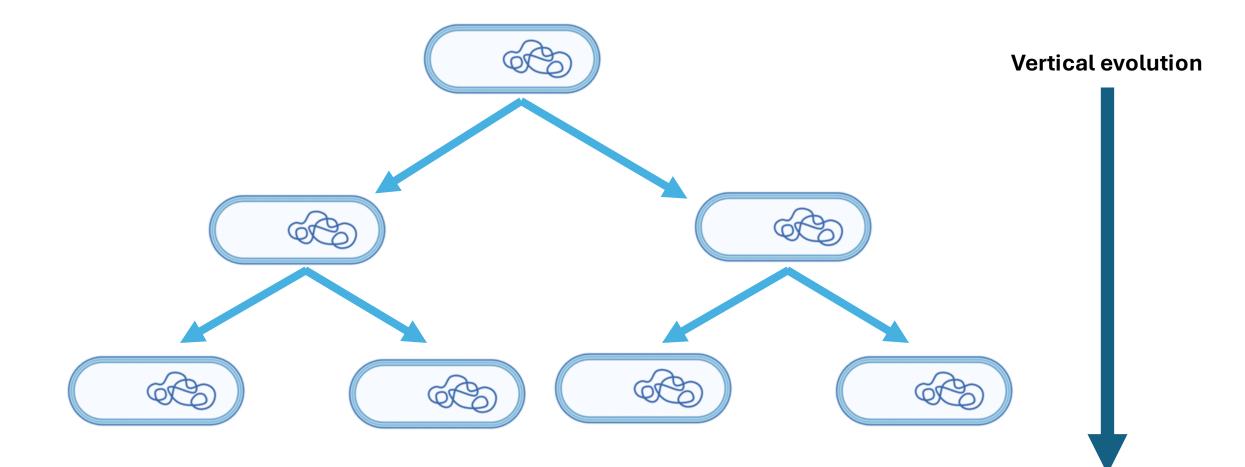
Prediction of major antibiotic resistance in *Escherichia coli* and *Klebsiella pneumoniae* in Singapore, USA and China using a limited set of gene targets

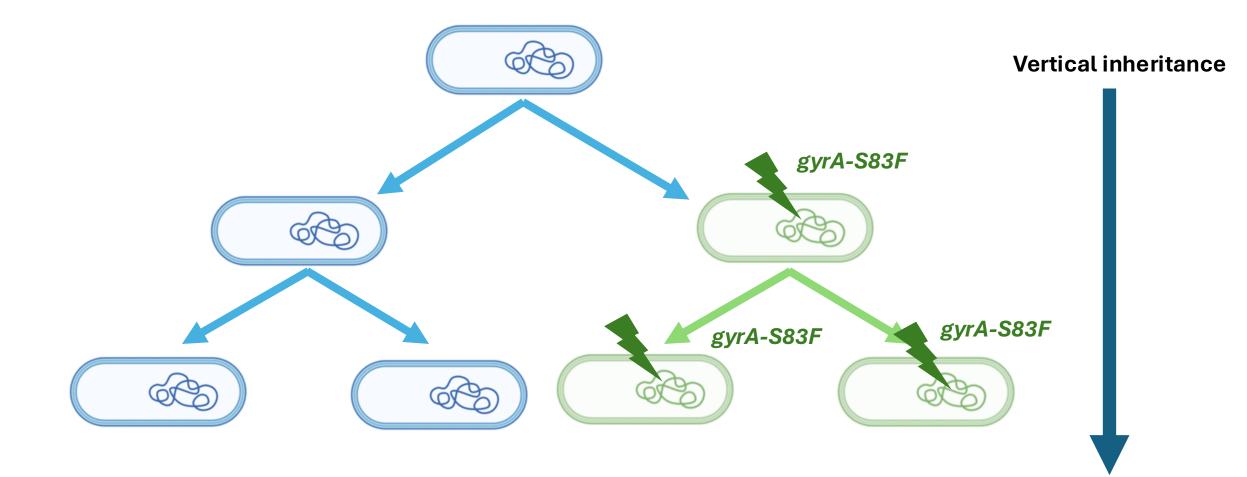


Andrew N. Ginn^{a,b,c}, Agnieszka M. Wiklendt^a, Zhiyong Zong^d, Raymond T.P. Lin^{e,f}, Jeanette W.P. Teo^e, Paul A. Tambyah^{g,h}, Lance R. Peterson^{i,j,k}, Karen Kaul^{i,k}, Sally R. Partridge^{a,b,c}, Jonathan R. Iredell^{a,b,c,*} Limited diversity in the gene pool allows prediction of third-generation cephalosporin and aminoglycoside resistance in Escherichia coli and Klebsiella pneumoniae

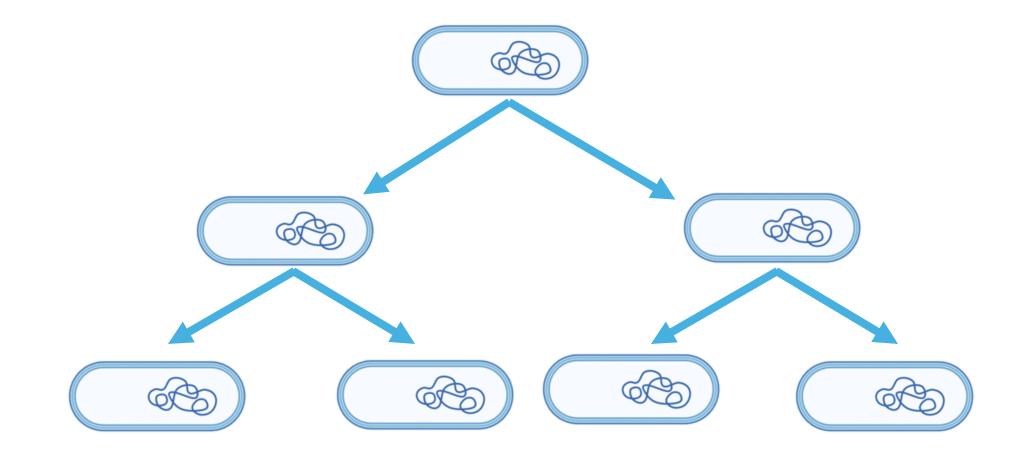
Andrew N. Ginn^{a,b,c}, Zhiyong Zong^{a,d}, Agnieszka M. Wiklendt^a, Lee C. Thomas^a, John Merlino^e, Thomas Gottlieb^e, Sebastiaan van Hal^{f,1}, Jock Harkness^g, Colin Macleod^h, Sydney M. Bellⁱ, Marcel J. Leroi^j, Sally R. Partridge^{a,b,c}, Jonathan R. Iredell^{a,b,c,*} CrossMark

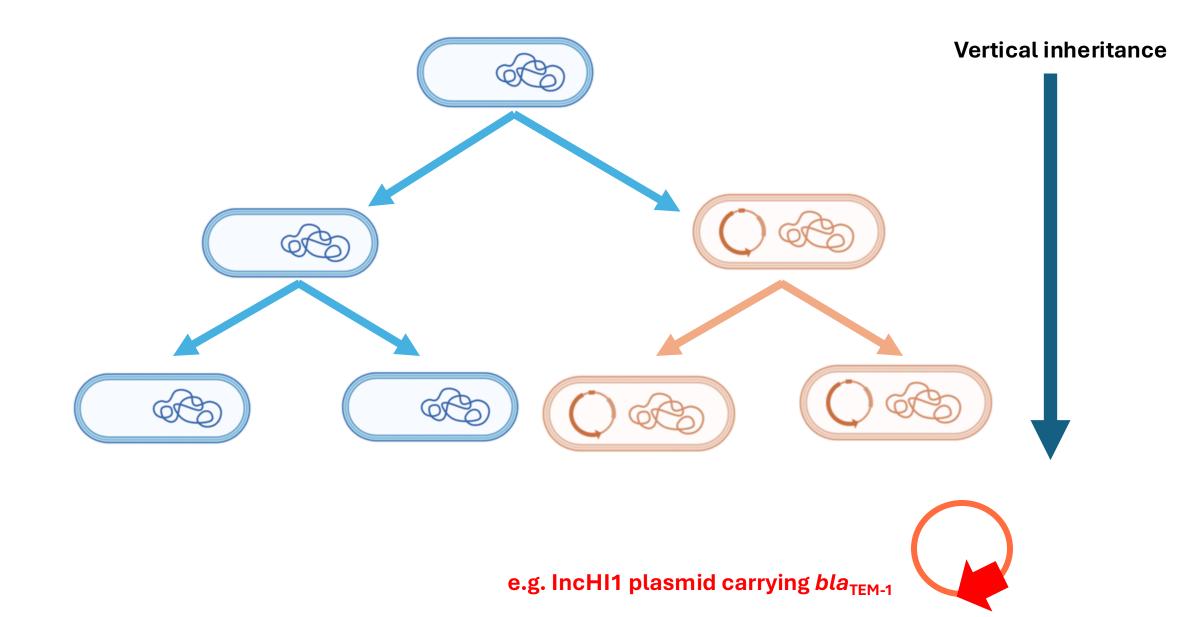
Molecular determinants detectable via WGS

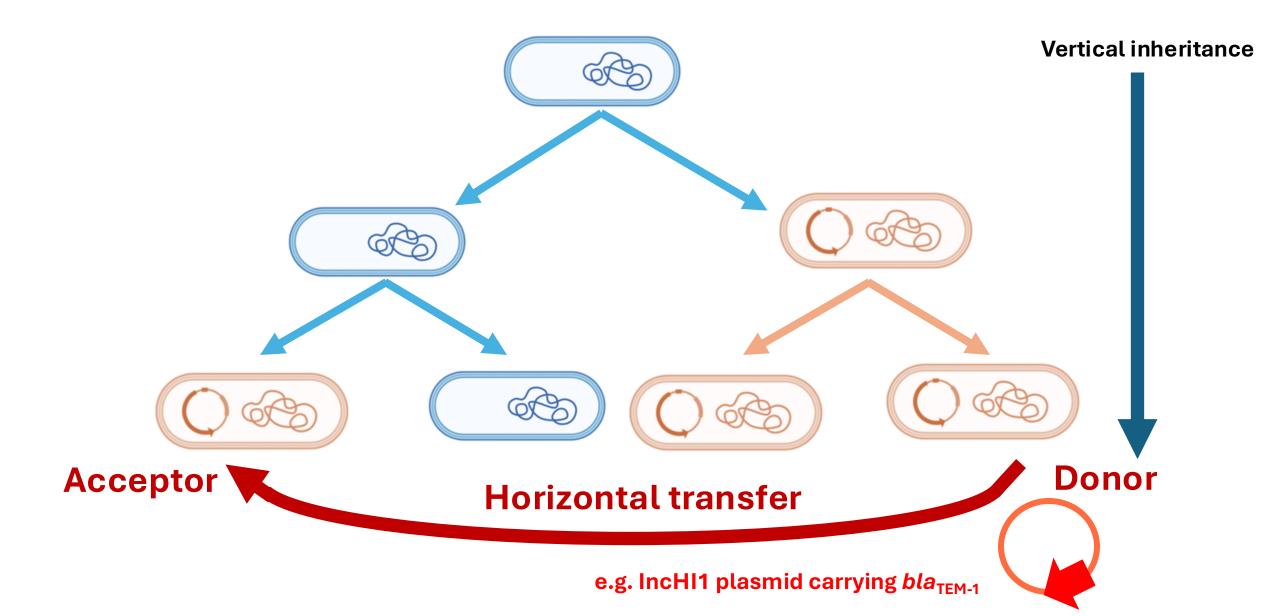



Acquired AMR genes

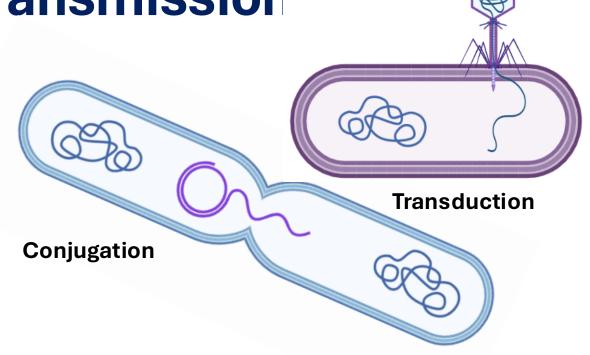
Point mutations


Antimicrobial resistance transmission: mutations


Antimicrobial resistance transmission: mutations


Antimicrobial resistance transmission: genes

Antimicrobial resistance transmission: genes



Antimicrobial resistance transmission: genes

Antimicrobial resistance transmission

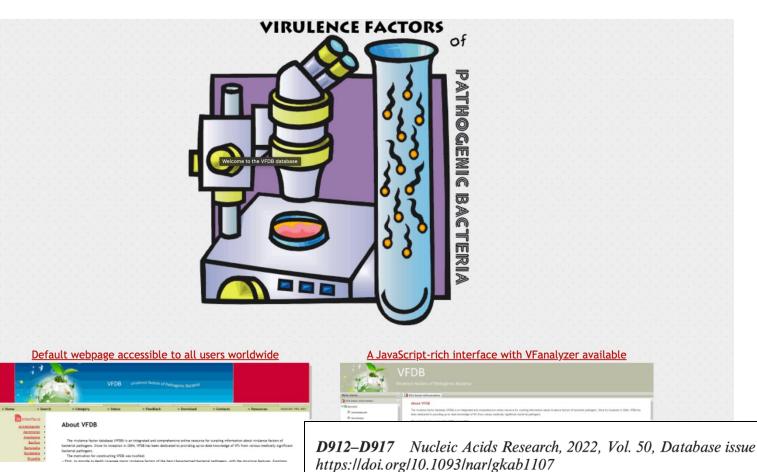
- Antimicrobial resistance genes can be horizontally acquired and spread via mobile genetic elements
- **Mobile genetic elements** include plasmids, bacteriophages, transposons, integrons, and insertion sequences
- Detection of maker genes associate with plamids and other mobile genetic elements can be carried out using most tools for detecting AMR genes
- Long read sequencing (e.g. Nanopore) can also be used to resolve complex mobile genetic elements

Common mechanisms of horizontal gene transfe

Antimicrobial Agents and Chemotherapy EPIDEMIOLOGY AND SURVEILLANCE July 2014 Volume 58 Issue 7 https://doi.org/10.1128/aac.02412-14

In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing

Alessandra Carattoli^a, Ea Zankari^b, Aurora García-Fernández^a, Mette Voldby Larsen^c, Ole Lund^c, Laura Villa^a, Frank Møller Aarestrup^b, Henrik Hasman^b


Antimicrobial resistance: transmission

- UK nosocomial outbreak of KPC-producing Enterobacteriaceae (KPC-E) outbreak among 20 patients
- Following an K. pneumoniae index case harbouring a pKpQIL-D2 plasmid carrying a bla_{KPC} gene 10 months prior, carbapenemase resistance disseminated via multiple routes:
 - Clonal spread of *K. pneumoniae* ST661 carrying a pKpQIL-D2 plasmid (15 cases)
 - Horizontal transfer of pKpQIL-D2 plasmid to other KpSC STs and other bactierial species (5 cases)
 - Transmission of bla_{KPC} via a *Tn4401a* transposabe element from the outbreak pKpQIL-D2 plasmid to other plasmids

J Antimicrob Chemother 2017; **72**: 3025–3034 doi:10.1093/jac/dkx264 Advance Access publication 7 August 2017 **Covert dissemination of carbapenemase-producing** *Klebsiella pneumoniae* (KPC) in a successfully controlled outbreak: long- and short-read whole-genome sequencing demonstrate multiple genetic modes of transmission Jessica Martin^{1,2}†, Hang T. T. Phan^{3,4}*†, Jacqueline Findlay⁵, Nicole Stoesser³, Louise Pankhurst³, Indre Navickaite³, Nicola De Maio³, David W. Eyre³, Giles Toogood⁶, Nicolas M. Orsi^{1,2}, Andrew Kirby^{1,2}, Nicola Young², Jane F. Turton⁵, Robert L. R. Hill⁴, Katie L. Hopkins^{4,5}, Neil Woodford^{4,5}, Tim E. A. Peto^{3,4}, A. Sarah Walker^{3,4}, Derrick W. Crook^{3,4} and Mark H. Wilcox^{1,2}

Antibiotic resistance phenotype heta lacta 13/12/12 Kpne-ST-491 ≤0.125 >64 32 32 >16 0.5 10/07/13 Kpne-ST-661 >64 16 16 >16 >32 >32 Kpne-ST-661 2a >32 32 >16 >16 Kpne-ST-661 E.cloacae Kpne-ST-661 Kpne-ST-661 K.oxytoca 11 Kpne-ST-661 (pne-ST-250 13 08/11/13 Kone-ST-14 14 19/11/13 (pne-ST-661 15 16 17 19 16/01/14 20/01/14 Kpne-ST-661

Virulence factor detection

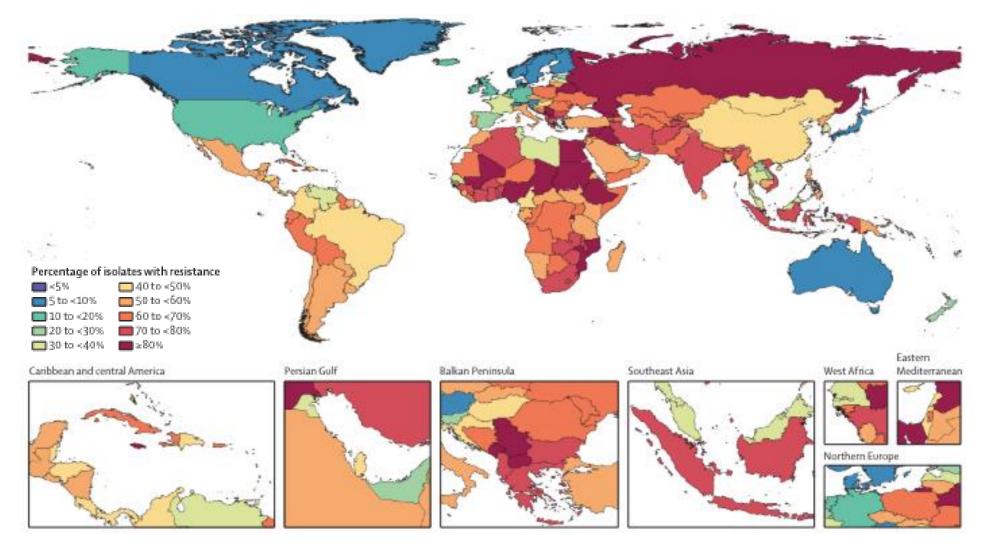
The Virulence Factor Database can be used with most software tools for detecting AMR genes

http://www.mgc.ac.cn/VFs/

Published online 30 November 2021

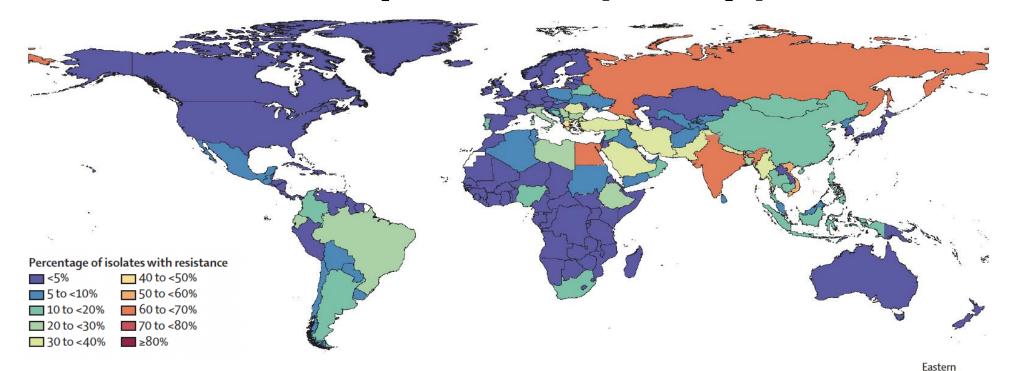
VFDB 2022: a general classification scheme for bacterial virulence factors

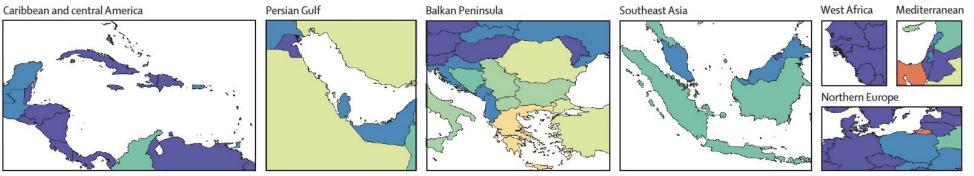
Bo Liu[†], Dandan Zheng[†], Siyu Zhou, Lihong Chen^{*} and Jian Yang^{®*}


Antimicrobial resistance (AMR) in *Klebsiella pneumoniae*

Antimicrobial resistance in *Klebsiella pneumoniae*

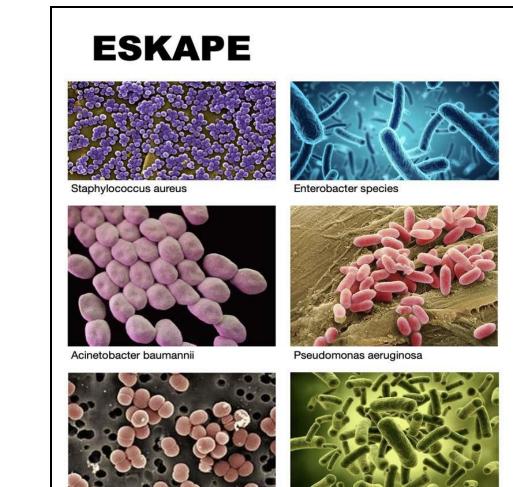
- Multidrug-resistance (MDR) is defined as resistance to ≥3 antimicrobial classes, in addition to ampicillin
- MDR is increasing, e.g. >75% of *K. pneumoniae* bloodstream infections in Malawi are MDR
- MDR cases are have mostly evolved from 'classical' strains that are associated with healthcare associated infections (HAI)
- Of particular concern are strains that are resistant to last line antimicrobials; the carbapenems and colistin
- Resistance to all drug classes used to treat K. pneumoniae has been observed
- Convergent evolution of hypervirulent and antimicrobial resistant strains has been observed


Wyres et al. 2020, Nat Rev Microbiol


Prevalence of *Klebsiella pneumoniae* resistant to third generation cephalosporins

AMR collaborators et al. 2022, Lancet

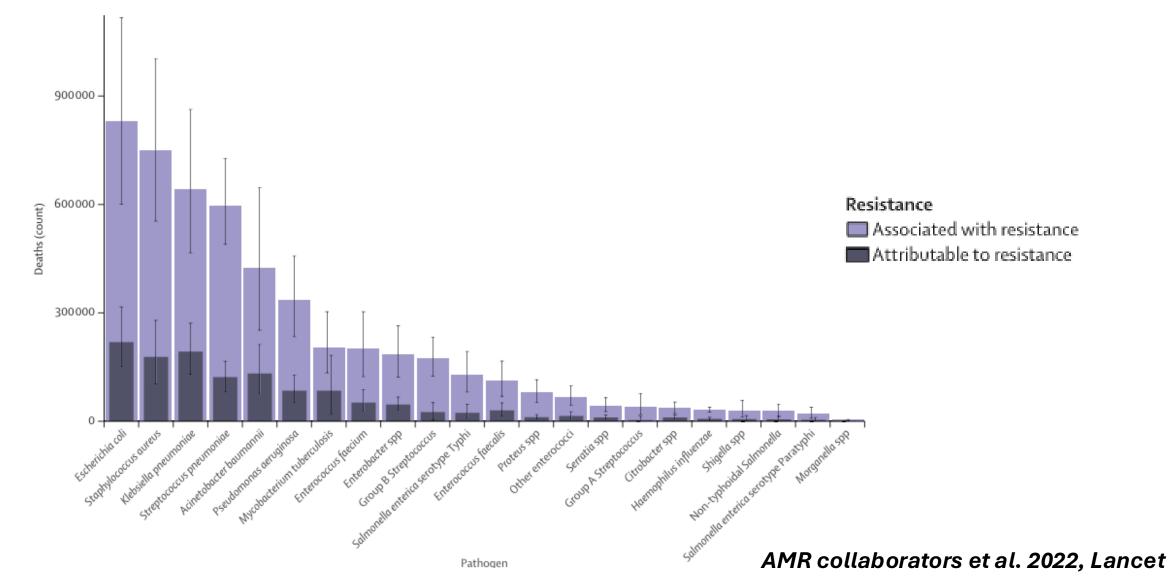
Prevalence of *Klebsiella pneumoniae* resistant to carbapenems (CRKp)



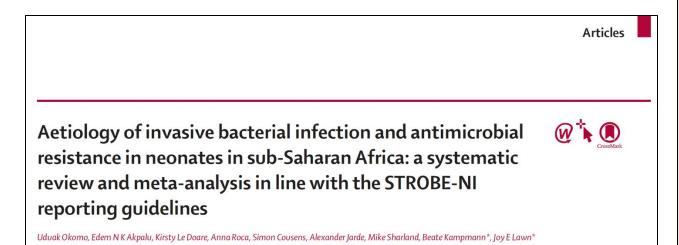
AMR collaborators et al. 2022, Lancet

K. pneumoniae is a priority & ESKAPE pathogen

Staphylococcus aureus methicillin-resistant


Enterococcus faecium

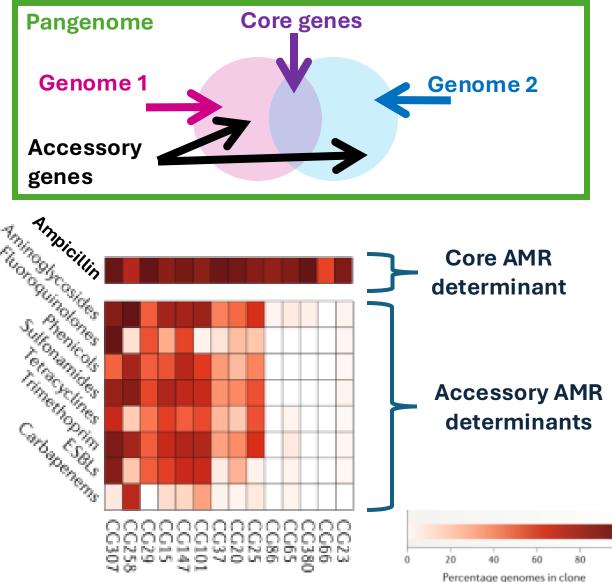
Klebsiella pneumoniae


WHO 2024

Antimicrobial resistant (AMR) *K. pneumoniae* is a leading cause of illness and mortality

Klebsiella is a major driver of neonatal sepsis

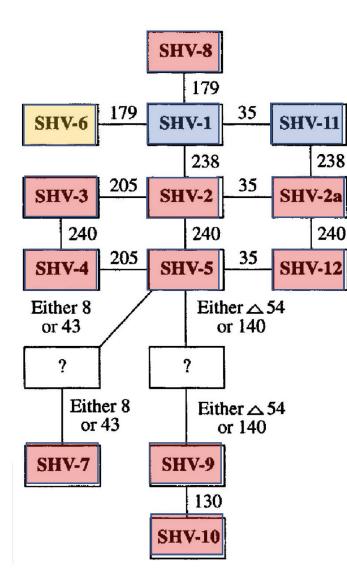
- *Klebsiella* is the second largest driver of neonatal • sepsis in from sub-Saharan Africa from 1980-2018
- Together with Staphylococcus aureus and ۲ *Escherichia coli, Klebsiella* spp. drove 25% of cases



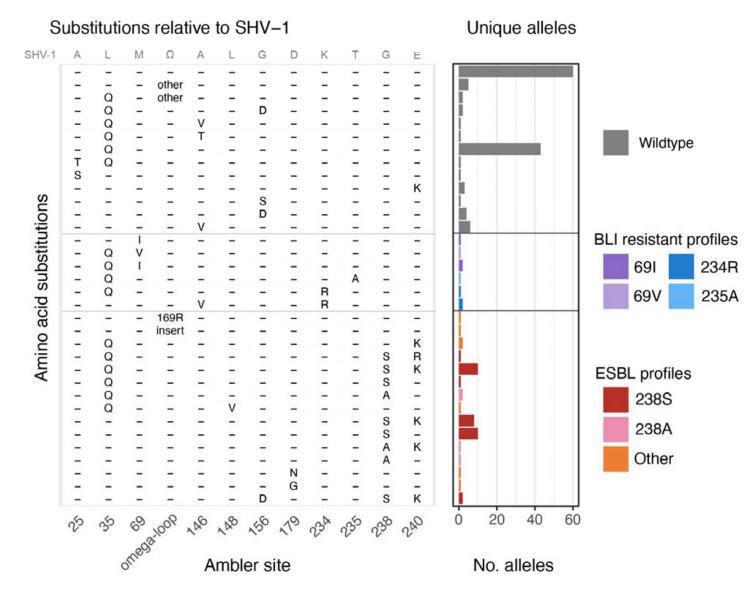
	1980-2007		2008-18			
	Number of isolates	Proportion (95% CI)	Number of isolates	Proportion (95% CI)		
Bacteraemia or sepsis						
Gram-positive						
Staphylococcus aureus	912	0.25 (0.19–0.31)	2080	0.25 (0.21–0.29)		
Streptococcus pyogenes	75	0.04 (0.02–0.08)	117	0.04 (0.02–0.07)		
Group B streptococci	213	0.07 (0.03-0.12)	342	0.06 (0.03-0.10)		
Group D streptococci or enterococcus	139	0.05 (0.03–0.07)	449	0.05 (0.04–0.07)		
Streptococcus pneumoniae	72	0.04 (0.02-0.08)	114	0.02 (0.01–0.04)		
Viridians streptococci	7	0.01 (0-0.05)	71	0.03 (0.01–0.05)		
Other Streptococcus species	63	0.03 (0.01–0.05)	209	0.05 (0.03–0.07)		
Other or unspecified Gram-positives	86	0.04 (0.01–0.08)	155	0.06 (0.03–0.09)		
Gram-negative						
Klebsiella species	644	0.15 (0.11-0.20)	1730	0.21 (0.16-0.27)		
Escherichia coli	377	0.10 (0.08-0.13)	856	0.10 (0.08-0.13)		
Pseudomonas species	146	0.04 (0.02-0.05)	189	0.03 (0.02–0.04)		
Enterobacter species	270	0.08 (0.03-0.13)	263	0.04 (0.03-0.05)		
Serratia species	0		129	0.03 (0.01–0.07)		
Proteus species	54	0.02 (0.01–0.04)	126	0.03 (0.02–0.04)		
Salmonella species	162	0.03 (0.02-0.05)	176	0.04 (0.02-0.06)		
Citrobacter species	61	0.04 (0.01–0.07)	122	0.02 (0.02–0.04)		
Haemophilus influenzae	11	0.01 (0-0.02)	10	0.01 (0-0.03)		
Neisseria meningitidis	0		17	0.03 (0-0.08)		
Acinetobacter species	94	0.05 (0.02-0.07)	299	0.05 (0.03-0.07)		
Other or unspecified Gram-negatives	522	0.20 (0.14–0.27)	508	0.10 (0.06–0.14)		

Core and accessory AMR determinants

- Resistance can be intrinsic or acquired
- Members of the KpSC carry some chromosomal antimicrobial resistance genes that can be considered core AMR genes
- There are two main interpretations, depending on the core gene:
 - 1. The pathogen is expected to be resistant to an antimicrobial
 - 2. That the gene does not confer resistance



Expected resistance to ampicillin

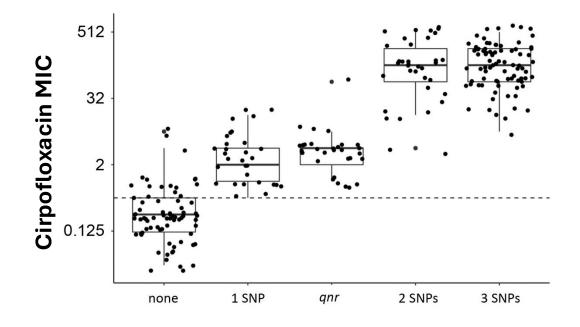

- All KpSC members are expected to be resistant to ampicillin
- Ampicillin resistance is driven by specific core chromosomal alleles of beta-lactamase genes:
 - *bla*_{SHV} in *K. pneumoniae sensu stricto*
 - bla_{LEN} in K. variicola
 - bla_{OKP} in K. quasipneumoniae
- In K. pneumoniae bla_{SHV} can become mobilizable by insertion sequences such as IS26, forming a mobile genetic element that facilitates dissemination to other bacteria via plasmids
- Mobilised variants of bla_{SHV} can acquire mutations that result in extended spectrum beta-lactamase activity (ESBL) conferring resistance to third generation cephalosporins, β-lactamase inhibitor (BLI) resistance, and occasionally carbapenems
- Mobilised forms of *bla*_{SHV} can be hyperexpressed under stronger promotors from IS (insertion sequences)
- A single isolate of *K*. *pneumoniae* can carry multiple chromosomal and mobilised forms

Tsang et al. 2024, bioRxiv; Wyres et al. 2020, Nat Rev Microbiol

blaSHV mutations and spectrum of activity

Heritage et al. 1999, JAC

Tsang et al 2024, bioRxiv

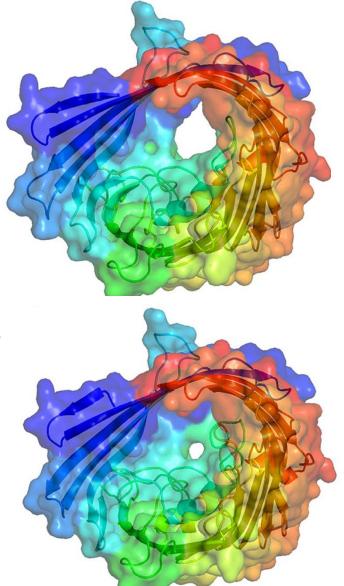

Other core AMR genes

- Both *fosA* (glutathione S-transferase) and the *oqxAB* (efflux pump) genes are considered core AMR genes in *K. pneumoniae*
- While fosA and oqxAB do confer reduced susceptibility at wild type expression levels to both fosfomycin and fluoroquinolones, respectively, this is does not meet recognised break points and is therefore not clinically significant
 - In other bacteria *fosA* and *oqxAB* can be associated with clinical resistance
 - In *K. pneumoniae,* mobililised forms are more highly expressed by strong promotors, e.g. via Insertion Sequences (IS) and can can confer a resistance phenotype these are reported by Kleborate

Ito, R. et al 2017, mBio; Li et al. 2019, Antimicrob Resist Infect Control; Wyres et al. 2020, Nat Rev Microbiol

Resistance to fluoroquinolones

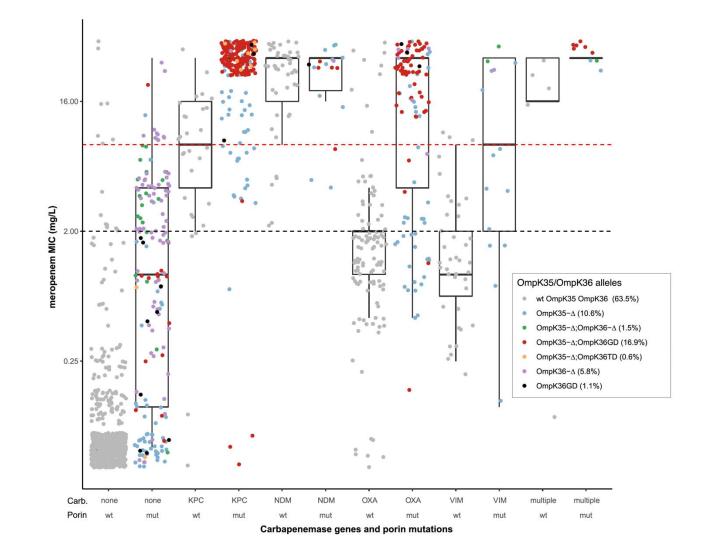
- Resistance to fluoroquinolones such as ciprofloxacin can be driven either:
 - 1. Acquired genes (e.g. *qnr*)
 - Mutations in the Quinolone Resistance Determining Region (QRDR) of core genes gyrA and/or parC
- Fluoroquinolone resistance mutations are synergistic
 - i.e. isolates with 2-3 QRDR mutations elevate the minimal inhibitory concentration (MIC) of the pathogen



Ciprofloxacin resistance determinants

Adapted from Moradigaravand et al, 2017. MBio

Mechanisms of carbapenem resistance


- Resistance to carbapenems can be driven by acquired AMF genes, e.g. $bla_{\rm KPC}$, and others
- *K. pneumoniae* encodes 2 major non-specific co-regulated outer membrane porins that allow nutrients and other hydrophilic molecules to diffuse into the cell e.g. beta-lactams
- Expression of these major porins is strongly linked with betalactam susceptibility
- Resistance to carbapenems can also arise though mutations in the genes encoding these due to constriction of the inner pore channel/eyelet, i.e.
 - ompK35 truncation
 - *ompK*36 truncation
 - *ompK36* synonymous point mutation *ompK36*-C25T
 - ompK36 beta-strand loop insertion/duplication OmpK36GD

Wong et al. 2022, PNAS; Wong et al. 2019, Nat Commun; Fajardo-Lubian et al. 2019, PLOS Pathogens

Mechanisms of carbapenem resistance

- bla_{OXA} and bla_{VIM} do not raise the minimal inhibitory concentrations (MIC) above clinical break points if ompK35 & ompK36 are wildtype
- ompK36 mutations increase MIC without acquired carbapenemase genes
- Combinations of acquired carbapenemase genes results in the highest MICs

Colistin resistance mechanisms

Carbapenem resistant *K. pneumoniae* (CRKp) infections are often treated with the last-line drug colistin

Resistance to colistin can be driven by:

- 1. Acquired genes (e.g. mcr)
- 2. Mutations in chromosomal genes
 - Truncation of *mgrB* (encodes a small transmembrane protein that regulates the PhoP/PhoQ system)
 - Truncation of *pmrB* (sensor kinase which also controls lipopolysaccharide modification)

In Vivo Evolution to Colistin Resistance by PmrB Sensor Kinase Mutation in KPC-Producing *Klebsiella pneumoniae* Is Associated with Low-Dosage Colistin Treatment

Antonio Cannatelli,^a Vincenzo Di Pilato,^a Tommaso Giani,^a Fabio Arena,^a Simone Ambretti,^b Paolo Gaibani,^c Marco Maria D'Andrea,^a Gian Maria Rossolini^{a,d,e}

Antimicrobial resistance (AMR) determinant detection and score analysis with Kleborate

Kleborate: genotyping & surveillance framework

Bioinformatics software for analysing KpSC whole genome sequencing data.

In a single analysis, Kleborate provides data on:

- 1. Assembly Quality Control Statistics
- 2. Species typing
- 3. Multilocus sequence typing (MLST)
- 4. In silico serotyping: K- and O-antigen typing
- 5. Virulence determinants
- 6. Antimicrobial Resistance determinants
- 7. Virulence and AMR scores

AMR determinant detection with Kleborate

Kleborate screens for **acquired AMR determinants** (not intrinsic):

1. Acquired AMR genes

- Kleborate uses a version of the generalised CARD AMR database curated for AMR determinants relevant to the KpSC
- Excludes wildtype *fosA* + *oqxAB* (but includes mobilised forms)
- blaSHV alleles are included

2. Specific mutations that occur in core chromosomal genes

- Quinolone Resistance Determining Region (QRDR) of gyrA & parC for fluroquinolones
- OmpK35 and OmpK36 for carbapenem resistance
- *mgrB* & *pmrB* for colistin resistance
- Mutations in *bla*_{SHV} that mediate ESBL and/or inhibitor resistance

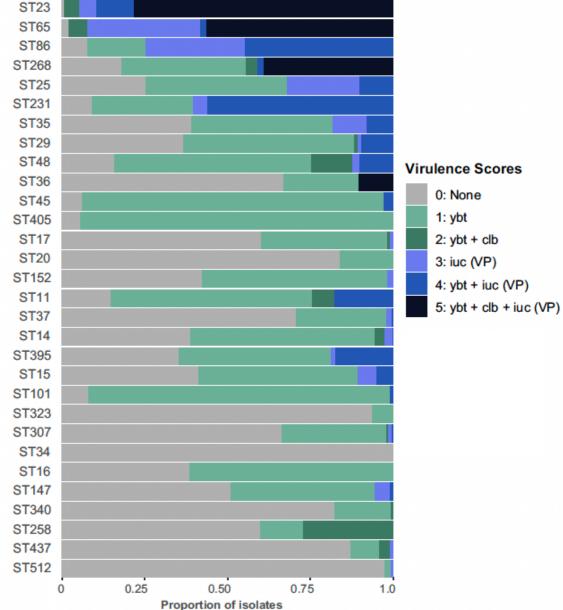
AMR determinant detection with Kleborate

Kleborate AMR reporting:

- Determinants are organised in columns of a delimited text file by drug class
- Mutations are reported in separate columns
- bla_{SHV} alleles are reported separately as chromosomal or acquired variants
- Only mobilised forms of *fosA* and *oxqAB* are reported

Kleborate AMR results should not be treated as direct predictions of antimicrobial resistance (AMR) phenotypes

Revision: Kleborate virulence scores

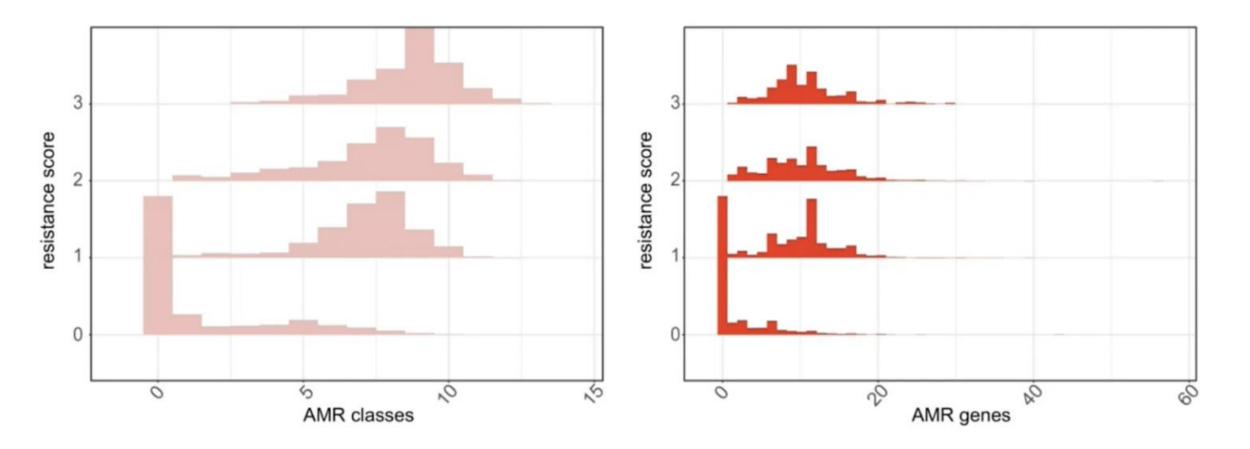

Summary of the relative level of acquired virulence/pathogenicity

	Virulence score	Virulence determinants*
Low	0	No accessory virulence determinants
	1	Yersiniabactin (<i>ybt</i>) only
	2	Colibactin (clb), either with or without yersiniabactin (<i>ybt</i>)**
	3	Aerobactin (<i>iuc</i>), either with or without yersiniabactin + Colibactin
	4	Aerobactin (<i>iuc</i>) + yersiniabactin (ybt), without Colibactin (<i>cbl</i>)
High	5	Aerobactin (<i>iuc</i>) + yersiniabactin (<i>ybt</i>) + Colibactin (<i>cbl</i>)

* rmp & Salmochelin (iro) not considered in scoring, but commonly co-carried with aerobactin (iuc) on virulence plasmids (KpVP)
 ** High levels of co-carriage of colibactin and yersiniabactin on ICEKp10

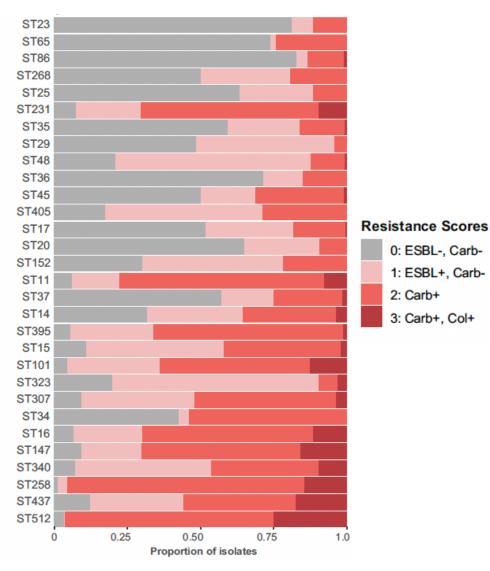
Revision: Kleborate virulence scores

Virulence score	Virulence determinants*
0	No accessory virulence determinants
1	Yersiniabactin (<i>ybt</i>) only
2	Colibactin (clb), either with or without yersiniabactin (<i>ybt</i>)**
3	Aerobactin (<i>iuc</i>), either with or without yersiniabactin + Colibactin
4	Aerobactin (<i>iuc</i>) + yersiniabactin (ybt), without Colibactin (<i>cbl</i>)
5	Aerobactin (<i>iuc</i>) + yersiniabactin (<i>ybt</i>) + Colibactin (<i>cbl</i>)

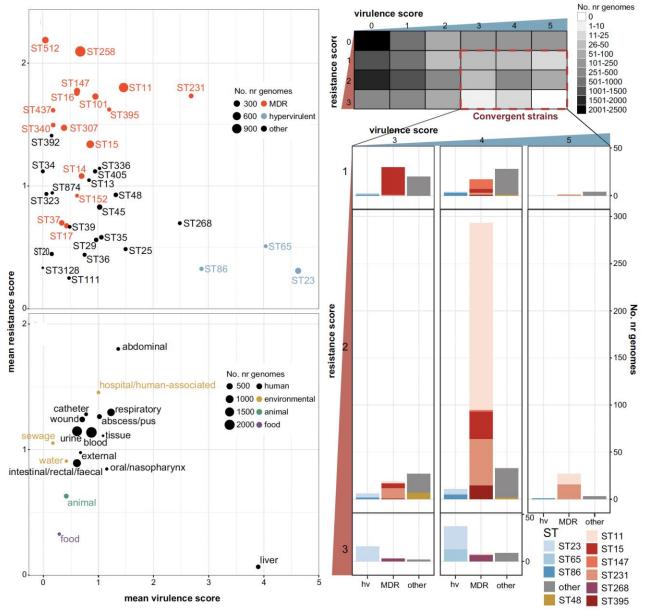

Kleborate AMR scoring

Summary of the relative level of acquired antimicrobial resistance (AMR) based on the number of resistance classes and determinants. These calculations exclude intrinsic ampicillin resistance.

Resistance score	Resistance determinants
 0	No ESBL, no carbapenemases (regardless of the presence/absence of colistin resistance determinants)
 1	ESBL, no carbapenemases (regardless of the presence/absence of colistin resistance determinants)
 2	Carbapenemase without colistin resistance (regardless of ESBL or OmpK)
 3	Carbapenemase and colistin resistance (regardless of ESBL or OmpK)


Kleborate AMR scoring

A resistance score of 1 or higher is associated with multidrug-resistance (MDR)



Kleborate AMR scoring

Resistance score	Resistance determinants
0	No ESBL, no carbapenemases (regardless of the presence/absence of colistin resistance determinants)
1	ESBL, no carbapenemases (regardless of the presence/absence of colistin resistance determinants)
2	Carbapenemase without colistin resistance (regardless of ESBL or OmpK)
3	Carbapenemase and colistin resistance (regardless of ESBL or OmpK)

Convergent evolution of MDR + hypervirulence

Convergent evolution of MDR + hypervirulence

Hospital outbreak – 5 patients with severe pneumonia following surgery for severe trauma and subsequent mechanical ventilation. 100% mortality rate.

Carbapenem strain acquired the pLVPK virulence plasmid harbouring salmochelin, aerobactin, and rmp genes.

Any questions or reflections?